



# **CURRENT SENSOR**



**World Class Energy Management Solutions** 

# **Table of Contents**

| About KG Technologies                  | 3  |
|----------------------------------------|----|
| Customization                          | 4  |
| Mini Current Transformer               | 7  |
| Split-Core Current Sensor              | 10 |
| DC Immune Current Transformer          | 12 |
| Open Loop Hall-Effect Current Sensor   | 14 |
| Closed Loop Hall-Effect Current Sensor | 20 |
| Fluxgate Current Sensor                | 24 |
| Global Contact Information             | 31 |

### **About KG Technologies. Inc.**

## Switch • Measure • Protect

KG Technologies, founded in 1999, is dedicated to innovative development and high quality/high volume manufacturing of latching relays for the Global Energy Market. We are a preferred supplier due to our ability to provide value-add, cost-effective solutions to our customers with the highest quality global standards, and flexible delivery. For our customers, this translates into significant savings in cost.

In 2015, Hongfa Group, the largest latching relay manufacturer in the world, acquired KG Technologies, broadening our product line with a variety of products including power and signal relays, HVDC contactors, current transformers, and smart circuit breakers.

The combined companies have become the largest producer of latching relays in the world. As we continue to grow, we will add additional Energy Management Solutions to our portfolio.



#### **Customization**

#### The Most Reliable Current Sensors in the Market

KG Technologies provides flexible solutions from the design process through final product delivery. At the start of each project, we collaborate with our customers' engineers to understand their specific product needs and develop the most cost-effective and high-performance assemblies. We design our products to improve form, fit, as well as optimize performance.

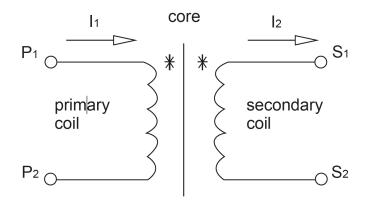
#### KGT Specializes in Customization and Value Added Services

The KG Team offers their expertise in customization (some examples below)

- Links / busbars
- Injection molding
- Service Disconnect and non-SD meter base assemblies
- e-Beam welding
- · Custom packaging and labelling
- Full Electrical and environmental test capabilities



#### **Product Overview**


The wide-measuring-range micro Current Transformers (CTs), PTs and current/voltage transformers, grade S CTs, high-saturation-high-linearity DC immune CTs are specially designed for wide measuring-range electricity meters (such as the wide-measuring-range three-phase-three wire, three-phase-four wire electricity meters, anti-tampering electricity meters). Hongfa designs and produces CTs according to IEC61869/IEC62053 standards.

## **Operating Conditions**

- Relative Humidity: < 90% at 25°C
- Altitude: 2000m
- Rated voltage: 500Vac with harmonic <5%
- There should be no gases, steam, chemical sediments, dust and any other harmful elements that might affect the insulation of the CTs
- No severe shock and vibration
- No strong external electromagnetic field

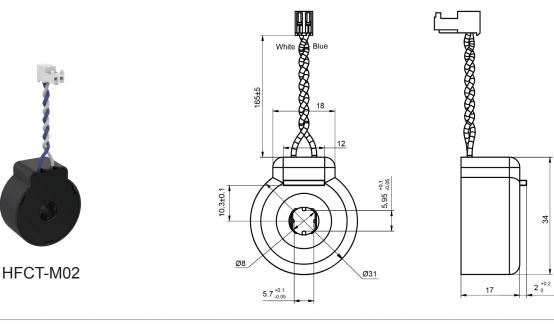
#### **Key Performance**

- Dielectric strength at 50Hz: 3kV 1min between primary coil and secondary coil, and the earth
- Dielectric strength between turns: open circuit at the secondary coil, there is no damage when the primary coil is applied with rated voltage during 1 minute
- Insulation resistance: The insulation resistance of the primary coil to the secondary coil and to the earth should be higher than  $500 M\Omega$
- Polarity: primary and secondary coil have the same polarity

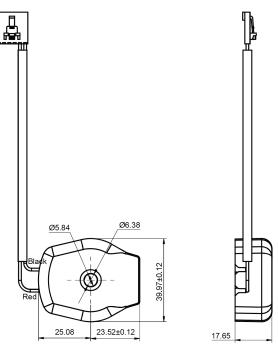


- Errors: a CT has two different errors, current error (ratio error) and phase shift error, which can be measured with CT testing equipment
- Accuracy Class:
   Transformation Ratio = Nominal Primary Current / Nominal Secondary Current

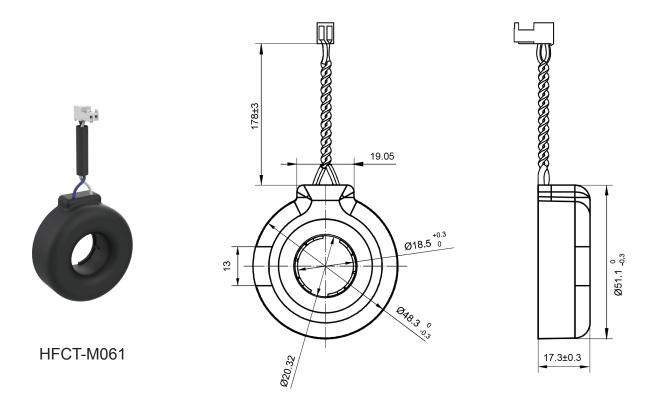
#### **IEC61869 Error Limits**


|                |                         |      | error |     | Phase displacement |             |     |     |              |             |         |      |
|----------------|-------------------------|------|-------|-----|--------------------|-------------|-----|-----|--------------|-------------|---------|------|
| Accuracy class | y ±%                    |      |       |     |                    | ± Minutes   |     |     |              | ± Centii    | radians |      |
|                | at current (% of rated) |      |       |     | at current (       | % of rated) |     |     | at current ( | % of rated) |         |      |
|                | 5                       | 20   | 100   | 120 | 5                  | 20          | 100 | 120 | 5            | 20          | 100     | 120  |
| 0.1            | 0.4                     | 0.2  | 0.1   | 0.1 | 15                 | 8           | 5   | 5   | 0.45         | 0.24        | 0.15    | 0.15 |
| 0.2            | 0.75                    | 0.35 | 0.2   | 0.2 | 30                 | 15          | 10  | 10  | 0.9          | 0.45        | 0.3     | 0.3  |
| 0.5            | 1.5                     | 0.75 | 0.5   | 0.5 | 90                 | 45          | 30  | 30  | 2.7          | 1.35        | 0.9     | 0.9  |
| 1              | 3.0                     | 1.5  | 1.0   | 1.0 | 180                | 90          | 60  | 60  | 5.4          | 2.7         | 1.8     | 1.8  |

Remark: DC immune products do not apply to the above table.


#### **Mini Current Transformer**

# Bus-bar type Current Transformer

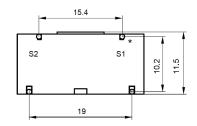

- Various mechanical dimensions and different forms available
- Linear output current, high precision
- Compact size, light weight, easy installation
- PBT flame retardant plastic casing
- Encapsulated with epoxy resin to ensure high dielectric strength





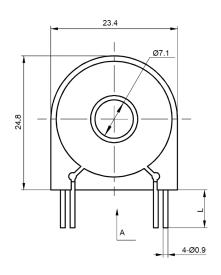


#### **Mini Current Transformer**




- 1) Avoid using current transformer in a strong magnetic field, the external magnetic field will affect the measurement accuracy of the CT.
- 2) It is not feasible to evaluate all performance parameters for every possible application and installation environment. Therefore, it is the user's responsibility to select the most suitable product for their specific application.
- Please contact KG technologies for technical assistance when evaluating a CT for a specific use case or if you have customization requirements.
- 3) The operating temperature range in this specification refers to the maximum tolerable temperature range under specific load conditions.
- 4) To ensure optimal performance of current transformers, avoid dropping them or subjecting them to strong mechanical shocks.
- 5) All the performance data listed in the datasheet are the initial values tested under standard testing conditions.
- 6) We reserve the right to modify the product and its specifications without prior notice. Customers are responsible for verifying the applicable specifications before placing their initial order and may request the latest specifications from us when required to ensure accuracy and suitability for their application.

## **PCB-mount type Current Transformer**

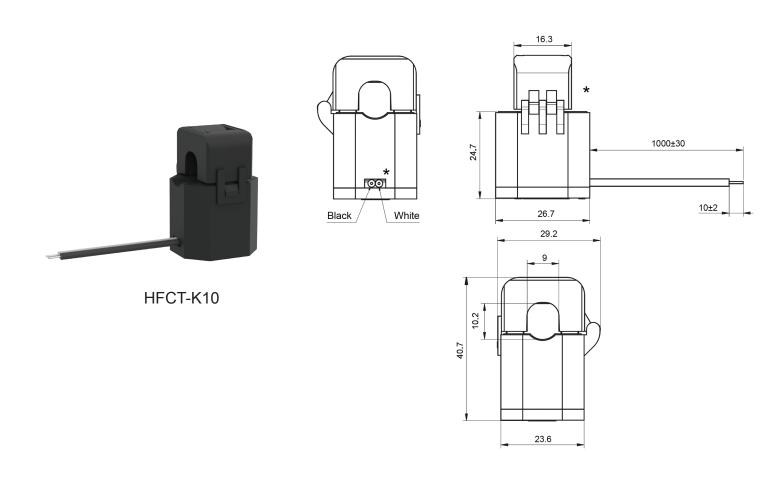

- Fully encapsulated with epoxy resin, resistant to harsh environment, high dielectric strength
- PCB-mount type
- The CT secondary output can be configured for PCB mounting, with flex wires or tin-plated copper wire. Upon request, flex wires can also be terminated with connectors to meet specific application requirements.- Linear output current, high precision
- Compact size, light-weight for easy installation
- PBT flame retardant plastic casing

# **Mini Current Transformer**

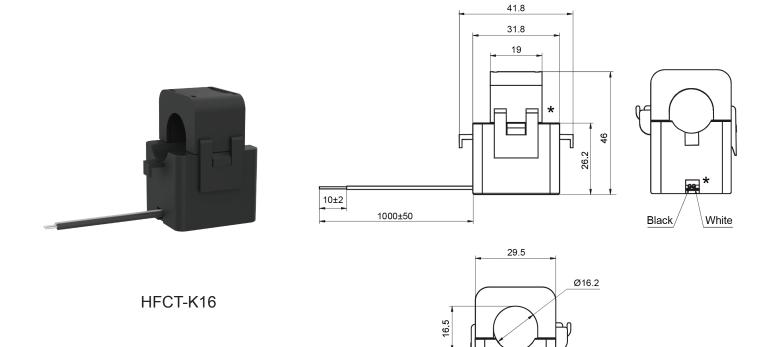









| Part Number | Туре           | Primary<br>Current | Max<br>Primary<br>Current | Rated<br>Secondary<br>Current | Accuracy<br>Class | Product Image |
|-------------|----------------|--------------------|---------------------------|-------------------------------|-------------------|---------------|
| HFCT-M02    | 30 - 200A/15mA | 30A                | 200A                      | 15mA                          | 0.1               |               |
| HFCT-M03    | 30 - 320A/10mA | 30A                | 320A                      | 10mA                          | 0.1               |               |
| HFCT-M061   | 60 - 400A/30mA | 60A                | 400A                      | 30mA                          | 0.1               | 0             |
| HFCT-M406   | 5 - 60A/2.5mA  | 5A                 | 60A                       | 2.5mA                         | 0.2               |               |


## **Split-Core Current Sensor**

# Main Features and Applications

- Divisible iron core, with high accuracy and low magnetic loss
- Elegant appearance, compact size, light weight, easy installation
- Applications:
  - Electronic multifunction meter and field calibrator, measurements with instruments and protection functions.
  - General measurement and protection for power or electric systems that have rather requires motility or dispose limited space.



## **Split-Core Current Sensor**

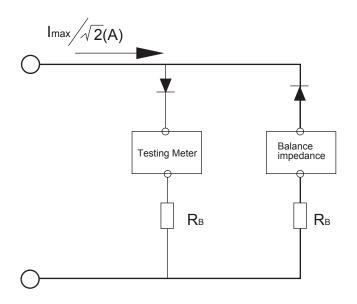


- 1) Avoid using current transformer in a strong magnetic field, the external magnetic field will affect the measurement accuracy of the CT.
- 2) It is not feasible to evaluate all performance parameters for every possible application and installation environment.

  Therefore, it is the user's responsibility to select the most suitable product for their specific application.
- Please contact KG technologies for technical assistance when evaluating a CT for a specific use case or if you have customization requirements.
- 3) The operating temperature range in this specification refers to the maximum tolerable temperature range under specific load conditions.
- 4) To ensure optimal performance of current transformers, avoid dropping them or subjecting them to strong mechanical shocks.
- 5) All the performance data listed in the datasheet are the initial values tested under standard testing conditions.
- 6) We reserve the right to modify the product and its specifications without prior notice. Customers are responsible for verifying the applicable specifications before placing their initial order and may request the latest specifications from us when required to ensure accuracy and suitability for their application.

| Part Number | Туре              | Primary<br>Current | Max<br>Primary<br>Current | Rated<br>Secondary<br>Current | Accuracy<br>Class | Product Image |
|-------------|-------------------|--------------------|---------------------------|-------------------------------|-------------------|---------------|
| HFCT-K10    | 60 - 80A/20mA     | 60A                | 80A                       | 20mA                          | 1.0               |               |
| HFCT-K16    | 100 - 120A/33.3mA | 100A               | 120A                      | 33.3mA                        | 1.0               |               |

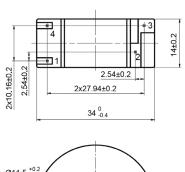
#### **DC-Immune Current Transformer**

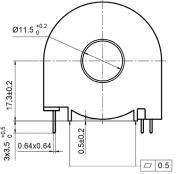

#### **Main Features**

- Low DC tolerance
- Suitable for a wide range of current (from 1.5 to 100A)
- Linear output current, high precision
- Compact size, delicate appearance
- Fully encapsulated with epoxy resin, high dielectric strength

#### **DC** Tolerance

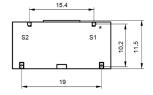
In normal condition, the power net is pure sinusoidal AC signal. But in special cases, the circuit have DC composition. Standard current transformer would be saturated under this condition, and cause huge error rate in the meter measurements. DC immune CT can solve this problem.

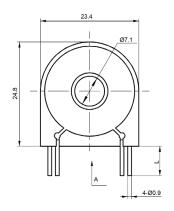

DC tolerance measurement circuit: use half rectified AC signal at input side, and connect meter and balance impedance at output side. Accuracy class 1.0 CTs the DC tolerance is within ±3.0%, and ±6.0% for accuracy class 2.0 CTs.




# **DC-Immune Current Transformer**



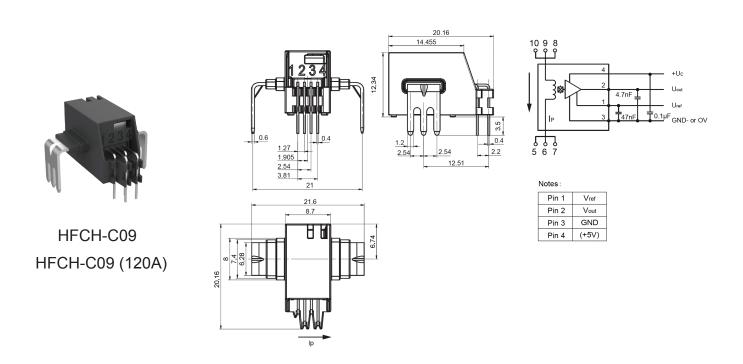

HFCT-D02








HFCT-D406






| Part Number | Туре            | Primary<br>Current | Max<br>Primary<br>Current | Rated<br>Secondary<br>Current | DC Immune<br>Peak<br>Current | Accuracy<br>Class | Product Image |
|-------------|-----------------|--------------------|---------------------------|-------------------------------|------------------------------|-------------------|---------------|
| HFCT-D02    | 5 - 100A/2mA    | 5A                 | 100A                      | 2mA                           | 100A                         | 0.2               |               |
| HFCT-D406   | 5 - 80A/1.667mA | 5A                 | 80A                       | 1.667mA                       | 40A                          | 0.2               |               |

## Main Features and Applications

- Simplified design enables quick and easy installation
- Energy-efficient operation with low power consumption
- Robust immunity to external electromagnetic interference, ensuring reliable performance
- Typical Applications
  - Uninterruptible Power Supplies (UPS)
  - Static converters for DC motor drives
  - AC variable speed drives and servo motor drives
  - Solar inverters and renewable energy systems
  - Power supplies for welding equipment



# **HFCH-C09 Electrical Data (Ta=25°C)**

| Parameter                       | Sym    | HFCH-C09/10 | HFCH-C09/16                                                         | HFCH-C09/20  | HFCH-C09/32               | HFCH-C09/40 | HFCH-C09/50 |  |  |  |
|---------------------------------|--------|-------------|---------------------------------------------------------------------|--------------|---------------------------|-------------|-------------|--|--|--|
| Primary Nominal Current         | IPN    | 10A         | 16A                                                                 | 20A          | 32A                       | 40A         | 50A         |  |  |  |
| Measuring Range                 | Ірм    | ±25A        | ±25A ±40A ±50A ±80A ±100A                                           |              |                           |             | ±125A       |  |  |  |
| Rated Output Voltage            | Vout   |             |                                                                     | 0.8V@IP      | N,T=25°C                  |             |             |  |  |  |
| Electrical Offset Voltage       | Voe    |             | ≤10mV(V <sub>OUT</sub> -V <sub>ref</sub> )@I <sub>P</sub> =0,T=25°C |              |                           |             |             |  |  |  |
| Reference Voltage               | Vref   |             | 2.5±0.02V@IPN                                                       |              |                           |             |             |  |  |  |
| Error                           | Х      |             |                                                                     | ≤±0.8%@I     | рn,T=25°С                 |             |             |  |  |  |
| Error                           | Х      |             |                                                                     | ≤±1.5%@IPN(· | -40°C~105°C)              |             |             |  |  |  |
| Linearity                       | εL     |             |                                                                     | ≤±0.59       | %@lpn                     |             |             |  |  |  |
| Linearirty                      | εL     |             |                                                                     | ≤±0.5°       | <b>%@</b> Ірм             |             |             |  |  |  |
| Temperature coefficient of Vref | TCVref |             |                                                                     | ≤±8mV(-40°~1 | 105°C)@I <sub>P</sub> =0A |             |             |  |  |  |
| Temperature coefficient of Vout | TCVout |             |                                                                     | ≤±170ppm/K(  | -40°C~105°C)              |             |             |  |  |  |
| Response Time                   | Tr     |             |                                                                     | ≤2.₺         | 5 µs                      |             |             |  |  |  |
| Frequency Bandwidth<br>(-3 dB)  | BW     |             |                                                                     | DC2          | 40kHz                     |             |             |  |  |  |
| Supply Voltage (±5%)            | Vc     |             | +5V                                                                 |              |                           |             |             |  |  |  |
| Current Consumption<br>(at +5V) | lc     |             | <20mA                                                               |              |                           |             |             |  |  |  |
| Operating Temperature           | Та     |             |                                                                     | -40°C ~      | +105°C                    |             |             |  |  |  |

#### HFCH-C09 (120A) Electrical Data (Ta=25°C)

| Parameter                       | Sym    | HFCH-C09/80                  | HFCH-C09/100                         | HFCH-C09/120 |  |  |  |  |  |
|---------------------------------|--------|------------------------------|--------------------------------------|--------------|--|--|--|--|--|
| Primary Nominal Current         | IPN    | 80A                          | 80A 100A                             |              |  |  |  |  |  |
| Measuring Range                 | Ірм    | ±200A ±250A ±300A            |                                      |              |  |  |  |  |  |
| Rated Output Voltage            | Vout   |                              | 0.8V@I <sub>PN</sub> ,T=25°C         |              |  |  |  |  |  |
| Electrical Offset Voltage       | Voe    | ≤10mV(Vour-Vref)@Ip=0,T=25°C |                                      |              |  |  |  |  |  |
| Reference Voltage               | Vref   |                              | 2.5±0.02V@IPN                        |              |  |  |  |  |  |
| Error                           | Х      |                              | ≤±0.8%@I <sub>PN</sub> ,T=25°C       |              |  |  |  |  |  |
| Error                           | Х      |                              | ≤±1.5%@IPN(-40°C~105°C)              |              |  |  |  |  |  |
| Linearity                       | εL     |                              | ≤±0.5%@I <sub>PN</sub>               |              |  |  |  |  |  |
| Linearirty                      | εL     |                              | ≤±0.5%@ІРМ                           |              |  |  |  |  |  |
| Temperature coefficient of Vref | TCVref |                              | ≤±8mV(-40°~105°C)@I <sub>P</sub> =0A |              |  |  |  |  |  |
| Temperature coefficient of Vout | TCVout |                              | ≤±170ppm/K(-40°C~105°C)              |              |  |  |  |  |  |
| Response Time                   | Tr     |                              | ≤2.5 µs                              |              |  |  |  |  |  |
| Frequency Bandwidth<br>(-3 dB)  | BW     |                              | DC240kHz                             |              |  |  |  |  |  |
| Supply Voltage (±5%)            | Vc     |                              | +5V                                  |              |  |  |  |  |  |
| Current Consumption<br>(at +5V) | Ic     | <20mA                        |                                      |              |  |  |  |  |  |
| Operating Temperature           | Та     |                              | -40°C ~ +105°C                       |              |  |  |  |  |  |

<sup>1)</sup> Avoid using current transformer in a strong magnetic field, the external magnetic field will affect the measurement accuracy of the CT.

<sup>2)</sup> It is not feasible to evaluate all performance parameters for every possible application and installation environment.

Therefore, it is the user's responsibility to select the most suitable product for their specific application.


Please contact KG technologies for technical assistance when evaluating a CT for a specific use case or if you have customization requirements.

<sup>3)</sup> The operating temperature range in this specification refers to the maximum tolerable temperature range under specific load conditions.

<sup>4)</sup> To ensure optimal performance of current transformers, avoid dropping them or subjecting them to strong mechanical shocks.

<sup>5)</sup> All the performance data listed in the datasheet are the initial values tested under standard testing conditions.

<sup>6)</sup> We reserve the right to modify the product and its specifications without prior notice. Customers are responsible for verifying the applicable specifications before placing their initial order and may request the latest specifications from us when required to ensure accuracy and suitability for their application.



# HFCH-C18 (0.625V) Electrical Data (Ta=25°C)

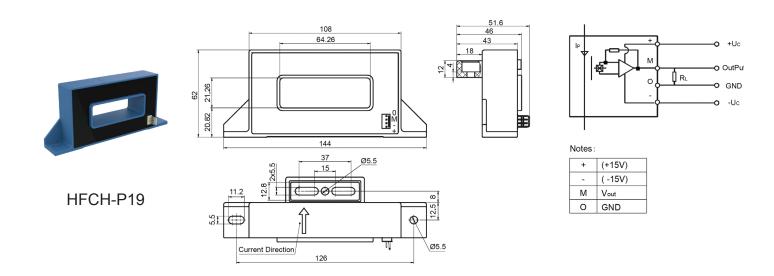
| Parameter                       | Sym    | HFCH-C18<br>/50 | HFCH-C18<br>/100 | HFCH-C18<br>/150 | HFCH-C18<br>/200 | HFCH-C18<br>/300         | HFCH-C18<br>/400 | HFCH-C18<br>/500 | HFCH-C18<br>/600 |
|---------------------------------|--------|-----------------|------------------|------------------|------------------|--------------------------|------------------|------------------|------------------|
| Primary Nominal Current         | IPN    | 50A             | 100A             | 150A             | 200A             | 300A                     | 400A             | 500A             | 600A             |
| Measuring Range                 | ІРМ    | ±150A           | ±300A            | ±450A            | ±600A            | ±900A                    | ±1100A           | ±1100A           | ±1100A           |
| Rated Output Voltage            | Vout   |                 |                  |                  | Vref±0.625V      | @I <sub>PN</sub> ,T=25°C |                  |                  |                  |
| Electrical Offset Voltage       | Voe    |                 |                  |                  | 2.5V±0.02V@      | )l⊳=0,T=25°C             |                  |                  |                  |
| Reference Voltage               | Vref   |                 |                  |                  | 2.5±0            | ).02V                    |                  |                  |                  |
| Error                           | Х      |                 |                  |                  | ≤±1%             | @IPN                     |                  |                  |                  |
| Linearity                       | εL     |                 |                  |                  | ≤±0.8°           | %@I₽N                    |                  |                  |                  |
| Temperature coefficient of Voe  | TCVoe  |                 |                  |                  | ≤±0.1ı           | mV/°C                    |                  |                  |                  |
| Temperature coefficient of Vref | TCVref |                 |                  | <u> </u>         | ≤±8mV(-40°~′     | 105°C)@I⊵=0/             | 4                |                  |                  |
| Temperature coefficient of Vout | TCVout |                 |                  | :                | ≤±170ppm/K(      | -40°C~105°C              | )                |                  |                  |
| Response Time                   | Tr     |                 |                  |                  | ≤5               | μs                       |                  |                  |                  |
| Frequency Bandwidth (-3 dB)     | BW     |                 |                  |                  | DC2              | 00kHz                    |                  |                  |                  |
| Supply Voltage (±5%)            | Vc     |                 | +5V              |                  |                  |                          |                  |                  |                  |
| Current Consumption<br>(at +5V) | lc     |                 | <25mA            |                  |                  |                          |                  |                  |                  |
| Operating Temperature           | Та     |                 |                  |                  | -40°C ~          | +105°C                   |                  |                  |                  |

#### HFCH-C18 (2V) Electrical Data (Ta=25°C)

| Parameter                       | Sym    | HFCH-C18<br>/50 | HFCH-C18<br>/100 | HFCH-C18<br>/150 | HFCH-C18<br>/200 | HFCH-C18<br>/300        | HFCH-C18<br>/400 | HFCH-C18<br>/500 | HFCH-C18<br>/600 |
|---------------------------------|--------|-----------------|------------------|------------------|------------------|-------------------------|------------------|------------------|------------------|
| Primary Nominal Current         | IPN    | 50A             | 100A             | 150A             | 200A             | 300A                    | 400A             | 500A             | 600A             |
| Rated Output Voltage            | Vout   |                 |                  |                  | Vref±2V@         | I <sub>PN</sub> ,T=25°C |                  |                  |                  |
| Electrical Offset Voltage       | Voe    |                 |                  |                  | 2.5V±0.02V@      | )l⊳=0,T=25°C            |                  |                  |                  |
| Reference Voltage               | Vref   |                 |                  |                  | 2.5±0            | ).02V                   |                  |                  |                  |
| Error                           | х      |                 |                  |                  | ≤±1%             | @IPN                    |                  |                  |                  |
| Linearity                       | εL     |                 |                  |                  | ≤±0.8°           | %@I₽N                   |                  |                  |                  |
| Temperature coefficient of Voe  | TCVoe  |                 |                  |                  | ≤±0.1ı           | mV/°C                   |                  |                  |                  |
| Temperature coefficient of Vref | TCVref |                 |                  | <u> </u>         | ≤±8mV(-40°~1     | 105°C)@lp=0.            | 4                |                  |                  |
| Temperature coefficient of Vout | TCVout |                 |                  | :                | ≤±170ppm/K(      | -40°C~105°C             | )                |                  |                  |
| Response Time                   | Tr     |                 |                  |                  | ≤5               | μs                      |                  |                  |                  |
| Frequency Bandwidth (-3 dB)     | BW     |                 |                  |                  | DC               | 50kHz                   |                  |                  |                  |
| Supply Voltage (±5%)            | Vc     |                 | +5V              |                  |                  |                         |                  |                  |                  |
| Current Consumption<br>(at +5V) | lc     |                 | <25mA            |                  |                  |                         |                  |                  |                  |
| Operating Temperature           | Та     |                 |                  |                  | -40°C ~          | +105°C                  |                  |                  |                  |

Please contact KG technologies for technical assistance when evaluating a CT for a specific use case or if you have customization requirements.

<sup>1)</sup> Avoid using current transformer in a strong magnetic field, the external magnetic field will affect the measurement accuracy of the CT.


<sup>2)</sup> It is not feasible to evaluate all performance parameters for every possible application and installation environment. Therefore, it is the user's responsibility to select the most suitable product for their specific application.

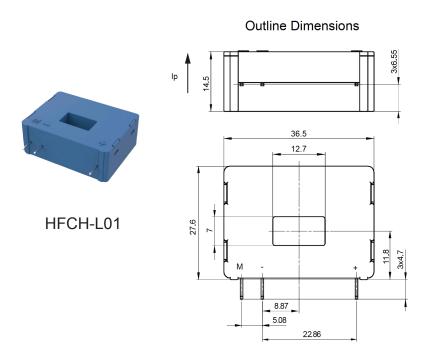
<sup>3)</sup> The operating temperature range in this specification refers to the maximum tolerable temperature range under specific load conditions.

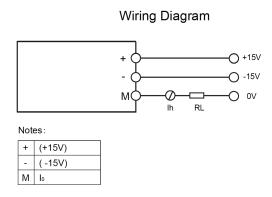
<sup>4)</sup> To ensure optimal performance of current transformers, avoid dropping them or subjecting them to strong mechanical shocks.

<sup>5)</sup> All the performance data listed in the datasheet are the initial values tested under standard testing conditions.

<sup>6)</sup> We reserve the right to modify the product and its specifications without prior notice. Customers are responsible for verifying the applicable specifications before placing their initial order and may request the latest specifications from us when required to ensure accuracy and suitability for their application.




# **HFCH-P19 Electrical Data (Ta=25°C)**


| Parameter                       | Sym    | HFCH-P19<br>/500 | HFCH-P19<br>/600 | HFCH-P19<br>/850 | HFCH-P19<br>/1000        | HFCH-P19<br>/1500 | HFCH-P19<br>/2000 | HFCH-P19<br>/2500 |  |
|---------------------------------|--------|------------------|------------------|------------------|--------------------------|-------------------|-------------------|-------------------|--|
| Primary Nominal Current         | IPN    | 500A             | 600A             | 850A             | 1000A                    | 1500A             | 2000A             | 2500A             |  |
| Measuring Range                 | Ірм    | ±1500A           | ±1800A           | ±2550A           | ±3000A                   | ±4500A            | ±5500A            | ±5500A            |  |
| Rated Output Voltage            | Vout   |                  |                  | ±4V(Rl           | _=10kΩ)@IPN              | Γ=25°C            |                   |                   |  |
| Electrical Offset Voltage       | Voe    |                  |                  | ≤20              | mV@I <sub>P</sub> =0,T=2 | 5°C               |                   |                   |  |
| Error                           | Х      |                  |                  |                  | ≤±1%@Ipn                 |                   |                   |                   |  |
| Linearity                       | εL     |                  | ≤±1%@IpN         |                  |                          |                   |                   |                   |  |
| Temperature coefficient of Voe  | TCVoe  |                  |                  |                  | ≤±1mV/°C                 |                   |                   |                   |  |
| Temperature coefficient of Vout | TCVout |                  |                  | ≤±0.1            | %/°C(-40°C~10            | 05°C)             |                   |                   |  |
| Response Time                   | Tr     |                  |                  |                  | ≤5 µs                    |                   |                   |                   |  |
| Frequency Bandwidth (-3 dB)     | BW     |                  |                  |                  | DC25kHz                  |                   |                   |                   |  |
| Supply Voltage (±5%)            | Vc     |                  | +15V             |                  |                          |                   |                   |                   |  |
| Current Consumption<br>(at +5V) | lc     | <25mA            |                  |                  |                          |                   |                   |                   |  |
| Operating Temperature           | Та     |                  |                  |                  | -40°C ~ +85°C            |                   |                   |                   |  |

# **Closed Loop Hall-Effect Current Sensor**

## Main Features and Applications

- Superior accuracy with excellent linearity for precise current measurement
- Optimized response time and wide bandwidth for dynamic performance
- Strong EMI immunity for stable operation
- Typical Applications
  - Uninterruptible Power Supplies (UPS)
  - Static converters for DC motor drives
  - · AC variable speed drives and servo motor drives
  - Inverters for industrial and renewable energy systems
  - Power supplies for welding equipment
  - Battery management systems (BMS) for evs and energy storage
  - Electric vehicle (EV) charging stations
  - Industrial automation and robotics
  - Power monitoring and energy management systems
  - Motor protection and control in HVAC systems
  - Smart grid and distributed generation systems
  - Rail traction and transportation systems
  - Data center power infrastructure





## **Closed Loop Hall-Effect Current Sensor**

## **HFCH-L01 Electrical Data (Ta=25°C)**

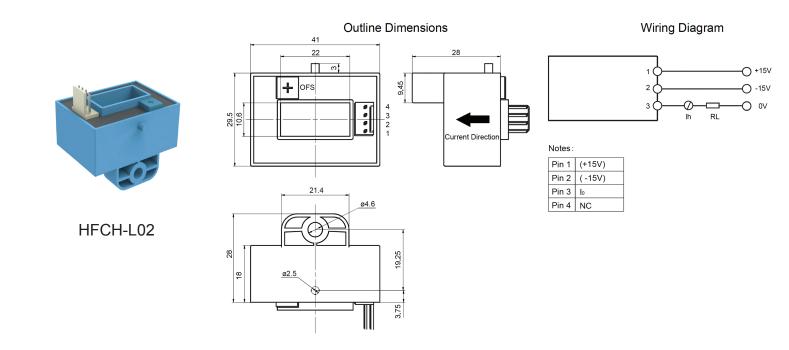
| Parameter                     | Sym | HFCH-L01/25 | HFCH-L01/50       | HFCH-L01/75  | HFCH-L01/100 |  |  |  |  |  |
|-------------------------------|-----|-------------|-------------------|--------------|--------------|--|--|--|--|--|
| Primary Nominal Current       | Ipn | 25A 50A     |                   | 75A          | 100A         |  |  |  |  |  |
| Measuring Range               | Ірм | ±37.5A      | ±100A             | ±150A        |              |  |  |  |  |  |
| Secondary Nominal Current     | Isn | 25mA        | 50mA              | 50mA         | 50mA         |  |  |  |  |  |
| Turns Ratio                   | N   | 1:1000      | 1:1500            | 1:1500       | 1:2000       |  |  |  |  |  |
| Measuring Resistance @ IPN    | Rn  | 0-75Ω       | 0-75Ω             | 0-75Ω        | 0-75Ω        |  |  |  |  |  |
| Measuring Resistance @ IPM    | Rм  | 0-50Ω       | 0-50Ω 0-50Ω 0-50Ω |              |              |  |  |  |  |  |
| Electrical Offset Current     | lo  |             | ≤±0.2m            | A @Ip=0      |              |  |  |  |  |  |
| Linearity                     | εL  |             | <±0.1%            | % @IPN       |              |  |  |  |  |  |
| Error                         | Х   |             | ≤±0.4%            | 6 @IPN       |              |  |  |  |  |  |
| Response Time                 | Tr  |             | ≤1                | μs           |              |  |  |  |  |  |
| Temperature Coefficient of Io | Іот |             | ≤±0.4mA (-40      | )°C ~ +85°C) |              |  |  |  |  |  |
| Frequency Bandwidth (-3 dB)   | BW  |             | DC1               | 00kHz        |              |  |  |  |  |  |
| Supply Voltage (±5%)          | Vc  |             | +15V DC ±5%       |              |              |  |  |  |  |  |
| Current Consumption           | lc  |             | <10mA + Isn       |              |              |  |  |  |  |  |
| Operating Temperature         | Та  |             | -40°C ^           | +85°C        |              |  |  |  |  |  |

<sup>1)</sup> Avoid using current transformer in a strong magnetic field, the external magnetic field will affect the measurement accuracy of the CT.

<sup>2)</sup> It is not feasible to evaluate all performance parameters for every possible application and installation environment.

Therefore, it is the user's responsibility to select the most suitable product for their specific application.

Please contact KG technologies for technical assistance when evaluating a CT for a specific use case or if you have customization requirements.


<sup>3)</sup> The operating temperature range in this specification refers to the maximum tolerable temperature range under specific load conditions.

<sup>4)</sup> To ensure optimal performance of current transformers, avoid dropping them or subjecting them to strong mechanical shocks.

<sup>5)</sup> All the performance data listed in the datasheet are the initial values tested under standard testing conditions.

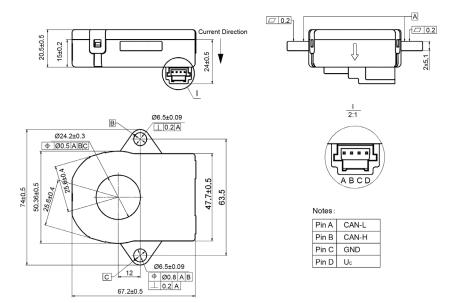
<sup>6)</sup> We reserve the right to modify the product and its specifications without prior notice. Customers are responsible for verifying the applicable specifications before placing their initial order and may request the latest specifications from us when required to ensure accuracy and suitability for their application.

# **Closed Loop Hall-Effect Current Sensor**



# **HFCH-L02 Electrical Data (Ta=25°C)**

| Parameter                     | Sym | HFCH-L02/25 | HFCH-L02/50 | HFCH-L02/100               | HFCH-L02/200 | HFCH-L02/300 |  |  |  |
|-------------------------------|-----|-------------|-------------|----------------------------|--------------|--------------|--|--|--|
| Primary Nominal Current       | lрN | 25A         | 50A         | 100A                       | 200A         | 300A         |  |  |  |
| Measuring Range               | Ірм | ±50A        | ±100A       | ±200A                      | ±400A        | ±600A        |  |  |  |
| Secondary Nominal Current     | Isn | 25mA        | 50mA        | 50mA                       | 100mA        | 100mA        |  |  |  |
| Turns Ratio                   | N   | 1:1000      | 1:1000      | 1:2000                     | 1:2000       | 1:3000       |  |  |  |
| Measuring Resistance @ IPN    | Rn  | 0-200Ω      | 0-100Ω      | 0-100Ω                     | 0-50Ω        | 0-50Ω        |  |  |  |
| Measuring Resistance @ IPM    | Rм  | 0-100Ω      | 0-50Ω       | 0-50Ω                      | 0-20Ω        | 0-20Ω        |  |  |  |
| Electrical Offset Current     | lo  |             |             | ≤±0.2mA @I <sub>P</sub> =0 |              |              |  |  |  |
| Linearity                     | εL  |             |             | <±0.1% @Ipn                |              |              |  |  |  |
| Error                         | Х   |             |             | ≤±0.4% @Ipn                |              |              |  |  |  |
| Response Time                 | Tr  | ≤1 µs       |             |                            |              |              |  |  |  |
| Temperature Coefficient of Io | Іот |             | ≤±          | 0.4mA (-40°C ~ +85°        | °C)          |              |  |  |  |

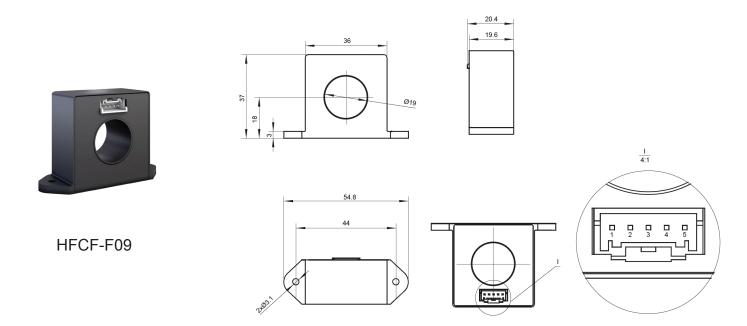

| Parameter                   | Sym | HFCH-L02/25 | HFCH-L02/50 | HFCH-L02/100  | HFCH-L02/200 | HFCH-L02/300 |
|-----------------------------|-----|-------------|-------------|---------------|--------------|--------------|
| Frequency Bandwidth (-3 dB) | BW  | DC100kHz    |             |               |              |              |
| Supply Voltage (±5%)        | Vc  | +15V DC ±5% |             |               |              |              |
| Current Consumption         | lc  | <10mA + Isn |             |               |              |              |
| Operating Temperature       | Та  |             |             | -40°C ~ +85°C |              |              |

# Main Features and Applications

- Exceptional accuracy and excellent linearity for precise current detection
- Fast response and wide bandwidth for complex signals.
- True galvanic isolation for safe measurement in high-voltage, noisy environments.
- Low drift and high stability for reliable long-term operation
- Low noise floor enabling detection of very small currents and irregular waveforms
- Typical Applications
  - Battery monitoring and management systems, including electric vehicles and energy storage
  - Accurate measurement of irregular and complex current waveforms under electrically isolated conditions
  - Renewable energy systems such as solar and wind inverters
  - Industrial process control and power quality monitoring
  - · Medical equipment requiring precise and isolated current sensing
  - Aerospace and defense systems demanding high precision and reliability
  - Research and development applications involving low-level and dynamic current measurements



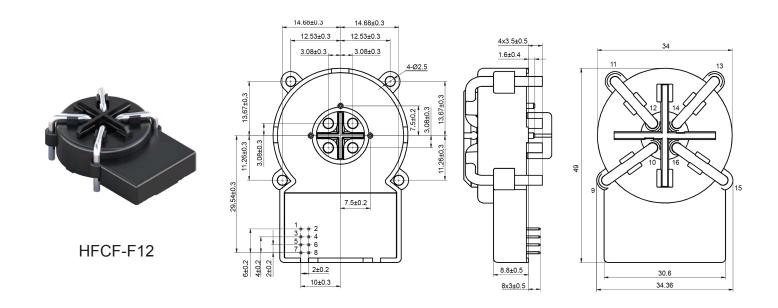
HFCF-M08




# **HFCF-M08 Electrical Data (Ta=25°C)**

| Parameter                         | Sym | Min   | Typical | Max   |
|-----------------------------------|-----|-------|---------|-------|
| Supply Voltage                    | Uc  | 8V    | 13.5V   | 16V   |
| Current Consumption @IP=0A        | Ic  |       | 30mA    | 40mA  |
| Current Consumption @IP=500A      | Ic  |       |         | 160mA |
| Ambient Operating Temperature     | TA  | -40°C |         | 85°C  |
| Primary Nominal DC or RMS Current | IPN | -500A |         | 500A  |
| Current Clamping Value            | Ірм | -530A |         | 530A  |
| Linearity                         | εL  |       | 0.1%    |       |

Support for CAN 2.0B protocol


| Parameter              | Sym        | Value | Conditions               |
|------------------------|------------|-------|--------------------------|
| Load-dump Over-voltage | <b>U</b> c | 32    | 400ms                    |
| Over-voltage           | <b>U</b> c | 24    | 1min                     |
| Reverse Polarity       | Uc         | -16   | 1min                     |
| Minimum Supply Voltage | UCmin      | 8     | Continuous not operating |
| Maximum Supply Voltage | UCmin      | 16    | Continuous not operating |

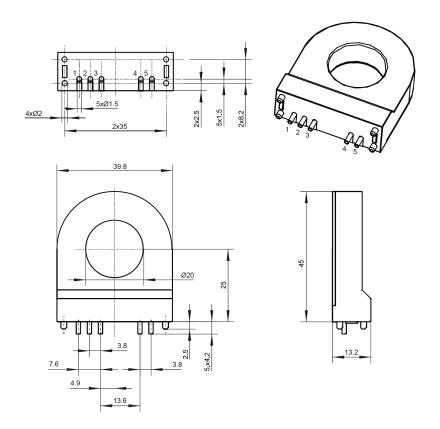


# **HFCF-M09 Electrical Data (Ta=25°C)**

| Parameter                        | Sym             | Min   | Typical | Max   |
|----------------------------------|-----------------|-------|---------|-------|
| Supply Voltage                   | V <sub>DD</sub> | 4.85V | 5V      | 5.15V |
| Power Consumption @IP=0A         | Pc              |       |         | 110mA |
| Voltage Input/Output, Low-level  | VL              | 0V    |         | 0.6V  |
| Voltage Input/Output, High-level | Vн              | 4.2V  |         | 5V    |
| Ambient Operating Tempaerature   | Та              | -40°C |         | 105°C |

| Parameter                                                 | Sym  | HFCF-F09/D-S5-1 | HFCF-F09/D-S5-2 | HFCF-F09/D-S5-3 |
|-----------------------------------------------------------|------|-----------------|-----------------|-----------------|
| Rated Residual Operating Current (DC)                     | ΙΔΝ1 | 6mA DC          | 6mA DC          | 56mA DC         |
| Rated Residual Operating Current (rms)                    | ΙΔΝ2 | 30mA rms        | -               | 20mA rms        |
| Meets IEC62752 Residual Current Operating Characteristics |      |                 |                 |                 |




# **HFCF-F12 Electrical Data (Ta=25°C)**

| Parameter                                     | Sym             | Min   | Тур | Max   |
|-----------------------------------------------|-----------------|-------|-----|-------|
| Primary Nominal RMS Current (1phase / 3phase) | lР              |       | 32A | 40A   |
| Supply Voltage                                | V <sub>DD</sub> | 4.85V | 5V  | 5.15V |
| Power Consumption                             | Pc              |       |     | 110mA |
| Voltage Input/Output, Low-level               | VL              | 0V    |     | 0.6V  |
| Voltage Input/Output, High-level              | Vн              | 4.2V  |     | 5V    |
| Ambient Operating Temperature                 | Та              | -40°C |     | 105°C |

| Parameter                                                                          | Sym  | HFCF-F09/D-S5-1 | HFCF-F09/D-S5-2 | HFCF-F09/D-S5-3 |
|------------------------------------------------------------------------------------|------|-----------------|-----------------|-----------------|
| Rated Residual Operating Current (DC)                                              | ΙΔΝ1 | 6mA DC          | 6mA DC          | 56mA DC         |
| Rated Residual Operating Current (rms) I <sub>ΔN2</sub> 30mA rms - 20mA rms        |      |                 |                 |                 |
| Meets UL2231, IEC62752 Requirements for Residual Current Operating Characteristics |      |                 |                 |                 |

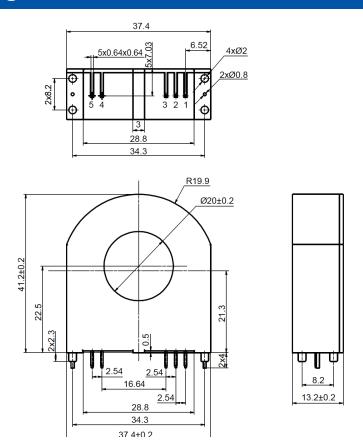


HFCF-F22(104)



# HFCF-F22(104) Electrical Data (Ta=25°C)

| Parameter                        | Sym             | Min   | Тур | Max   |
|----------------------------------|-----------------|-------|-----|-------|
| Supply Voltage                   | V <sub>DD</sub> | 4.85V | 5V  | 5.15V |
| Power Consumption                | Pc              |       |     | 110mA |
| Voltage Input/Output, Low-level  | VL              | 0V    |     | 0.6V  |
| Voltage Input/Output, High-level | Vн              | 4.2V  |     | 5V    |
| Ambient Operating Temperature    | Та              | -40°C |     | 105°C |


## **Residual Current Related Characteristics**

| Parameter                              | Sym  | HFCF-F22/D-S5-1(104) | HFCF-F22/D-S5-3(104) |
|----------------------------------------|------|----------------------|----------------------|
| Rated Residual Operating Current (DC)  | ΙΔΝ1 | 6mA DC               | 56mA DC              |
| Rated Residual Operating Current (rms) | ΙΔΝ2 | 30mA rms             | 20mA rms             |

Meets IEC62955, IEC62752, UL2231 Requirements for Residual Current Operating Characteristics



HFCF-F22



# **HFCF-F22 Electrical Data (Ta=25°C)**

| Parameter                        | Sym             | Min   | Тур | Max   |
|----------------------------------|-----------------|-------|-----|-------|
| Supply Voltage                   | V <sub>DD</sub> | 4.85V | 5V  | 5.15V |
| Power Consumption                | Pc              |       |     | 110mA |
| Voltage Input/Output, Low-level  | VL              | 0V    |     | 0.6V  |
| Voltage Input/Output, High-level | Vн              | 4.2V  |     | 5V    |
| Ambient Operating Temperature    | Та              | -40°C |     | 105°C |

| Parameter                                                                  | Sym  | HFCF-F22/D-S5-1 |  |  |
|----------------------------------------------------------------------------|------|-----------------|--|--|
| Rated Residual Operating Current (DC)                                      | ΙΔΝ1 | 6mA DC          |  |  |
| Rated Residual Operating Current (rms)                                     | ΙΔΝ2 | 30mA rms        |  |  |
| Meets IEC62752 Requirements for Residual Current Operating Characteristics |      |                 |  |  |

#### **Quality Statement**

KG Technologies Inc.'s commitment is to ensure that our services and products consistently meet our customers' expectations, delivered on time and defect free.

We also ensure that our products are compliant with all relevant statutory and regulatory requirements including those from IEC, ANSI and UL regulatory bodies.

Our various product delivery teams are highly skilled and are focused in ensuring that through innovation and creativity we are committed on continual improvement of our product quality and reliability, as well as the efficiency of our service offerings.

## **Production Quality Standards**

**RoHS** - KG conforms to the requirements of the RoHS directive (2011/65/EU). This directive specifies the restrictions of the use of hazardous substances in Electrical and Electronic markets in Europe.

**REACH** - The European Union's REACH Directive (EC 1907/2006) is designed to regulate the Registration, Evaluation, Authorization and Restriction of Chemical Substances.

**Conflict Minerals Policy** - We are committed to support ending the violence and human rights violations in the mining of certain minerals from a location described as the "Conflict Region."

In addition to our commitments, we must meet regulatory obligations. For more information view our statement at www.kgtechnologies.net - Environmental Policies Page.

#### **Global Contacts**

#### **North America Corporate Headquarters**

KG Technologies, Inc. 6028 State Farm Drive

Rohnert Park, CA 94928 - USA Phone: +1 (888) 513-1874 (PST) Email: techinfo@kgtechnologies.net

#### South America/ Asian Pacific Sales Office

Phone: +1 (888) 513-1874 (PST) Email: techinfo@kgtechnologies.net

#### **Mexico Sales Office**

Phone: +1 (888) 513-1874 (PST) Email: techinfo@kgtechnologies.net

#### **African / Middle East Headquarters**

KG Technologies, (Pty) Ltd. 49 Bergzicht Street

Malmesbury, WC, RSA, 7300 Phone: +27 (81) 562 5961

Email: techinfo@kgtechnologies.net

#### **India Sales Office**

Phone: +91 981 0833005

Email: techinfo@kgtechnologies.net

#### **European Headquarters**

KG-Technologies, Europe GmbH Stadttor 1, 40219 Düsseldorf, Germany

Phone: +33 (0) 646 572547

Email: techinfo@kgtechnologies.net

#### **France Sales Office**

KG Technologies, Europe GmbH Phone: + 33 (0) 646 572547

#### **UK Engineering Office**

KG Technologies, Europe GmbH Phone: + 33 (0) 646 572547

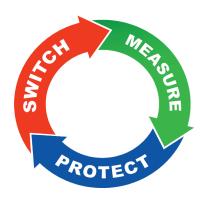
Email: techinfo@kgtechnologies.net

#### **Turkey Sales Office**

KG Technologies, Europe GmbH Phone: +33 (0) 646 572547

Email: techinfo@kgtechnologies.net

#### **Western European Sales Office**


Phone: +34 660 890 570

Email: techinfo@kgtechnologies.net

We Speak Your Language!
KG Technologies, a Diversified Company
Serving a Diversified Customer Base Globally



# We strive to provide our customers with commitment, teamwork and respect!





6028 State Farm Drive, Rohnert Park, CA 94928
Tel: +1.888.513.1874
Email: techinfo@kgtechnologies.net
www.kgtechnologies.net



Scan for more information