

HIGH POWER LATCHING RELAY

- 120A Latching Relay
- UC3 capability as per IEC 62052-31:
 Rated Operational Current (le) = 100A
 Rated Operational Voltage (Ue) = 220V
- 4kV dielectric strength between coil and contacts
- Outline dimensions: (115 x 54 x 24)mm
- Custom assemblies available with flex wire and/or copper extensions, and/or with integrated shunt
- RoHS compliant materials and process

Contact Data

Rated Load*	100A @ 220V
Contact form	3A or 3B
Contact material	AgSnO ₂
Contact resistance [†]	0.35mΩ (at 100 A)
Max. switching voltage‡	220 Vac
Max. carrying current§	120 A
Max. switching current	100 A
Rated switching power	22,000 VA
Set time	≤ 30 ms
Reset time	≤ 30 ms
Electrical endurance	10,000 cycles
Mechanical endurance	100,000 cycles

Characteristics

Insulation resistance	1,000MΩ (at 500 Vdc)
Dielectric strength:	
Coil to contact	4kVac for 1 min
	10kV 1.2μs/50μs
Across open contacts	2.5kVac for 1min
Dielectric creepage	8.9 mm
Ambient temperature	-40°C to +85°C
Ambient humidity	5% - 85% RH
Vibration	1.5 mm (DA) 10 Hz to 55 Hz
Shock resistance:	
Functional**	98 m/s ²
Survival	980 m/s ²
Coil termination	PCB or Wire
Unit weight	±300g

Load at which the relay can pass electrical endurance testing as per IEC 62052-31

Email: info@kgtechnologies.net

[†] Typical value for initial contact resistance per relay pole: Using a sample quantity of at least 20 units, take the average value from 5 continuous measurements from each sample.

[‡] Voltage at which the relay can pass UC3 as per IEC 62052-31

[§] Current at which the relay can pass UC3 as per IEC 62052-31

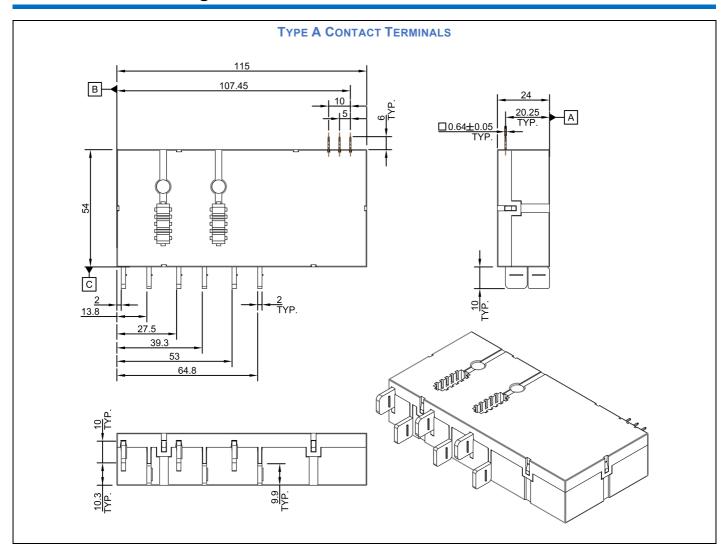
^{**} Unit may change state but is still functional

Coil Data

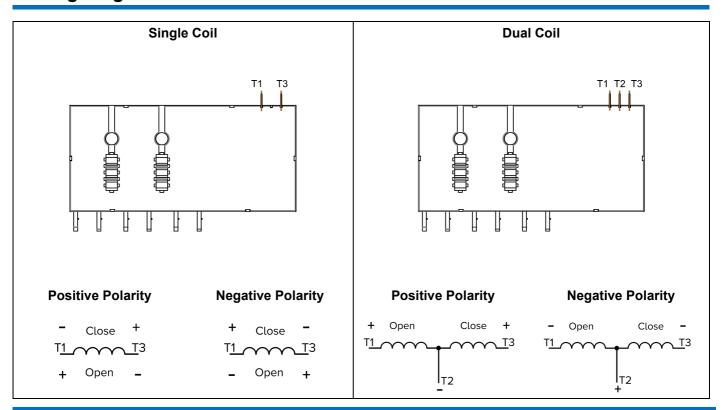
	Single Coil (Latching)	Dual Coil (Latching)
Coil Consumption	5W	10W
Pulse Duration	50ms	50ms

Coil Resistance (Ω±10%) at 23°C

Nominal Coil Voltage	Min Set/Reset Voltage	Single Coil (Latching)	Dual Coil (Latching)
6Vdc	4.8Vdc	7Ω	2 x 3.5Ω
9Vdc	7.2Vdc	16Ω	2 x 8Ω
12Vdc	9.6Vdc	29Ω	2 x 14.5Ω
24Vdc	19.2Vdc	115Ω	2 x 57.5Ω
48Vdc	38.4Vdc	460Ω	2 x 230Ω


Ordering Information

	K30	0	-			-	Т
Relay Series							
Terminal Type:	A: See drawing X: Custom Design ^{††}						
Coil Type:	S: Single Coil D: Dual Coil						
Coil Voltage ^{‡‡} :	6, 9, 12, 24, 48 Vdc						
Polarity:	P: Positive N: Negative						
Contact Form:	3A: Form 3A – Normally 3B: Form 3B – Normally	• •	•				
Contact Material:	T: AgSnO ₂						
Custom Number:	Cxxxx: Where xxxx repre	esents a ur	nique nur	nber for	custom	relay terr	ninal de


^{††} For custom designs, please contact KG Technologies. Integrated shunts, flex-wire, copper extension and brass terminals available

Email: info@kgtechnologies.net

^{‡‡} Coil voltage should be indicated in three-digit format (6Vdc = 006)

Wiring Diagrams

Application Notes

- 1. It is possible that during transit or final assembly the relay could change state. Therefore, it is recommended that all relays be set to the desired state via a power supply.
- 2. In order to maintain an "Open" or "Closed" state of the relay, the coil voltage should reach the rated voltage. The pulse width should be 50ms minimum to ensure a proper change of state. DO NOT energize both T1 and T3 at the same time on a Dual Coil or energize the coil for longer than 1 minute (damage to the coil could occur).
- 3. Applying excessive heat to the relay terminals (soldering or welding) can cause damage to the internal structure of the relay and should be avoided.
- 4. Moving or bending the terminals can cause damage to the internal structure of the relay and should be avoided.
- 5. For definitions of terms used in this data sheet, see glossary at www.kgtechnologies.net.

6028 State Farm Drive, Rohnert Park, CA 94928
Tel: +1.888.513.1874
Email: techinfo@kgtechnologies.net
www.kgtechnologies.net

Scan for more information

Disclaimer: This datasheet is for reference only. All specifications are subject to change without prior notice. KG Technologies, Inc. cannot predict every possible application for our relays. While we do our best to make our relays as versatile as possible, we highly recommend contacting our engineering team if you have any questions. KG Technologies, Inc. is not responsible for malfunctioning relays when operated outside the specified parameters given in this datasheet.

Phone: +1.888.513.1874

Email: info@kgtechnologies.net