

K218

HIGH POWER LATCHING RELAY

- 60A Latching Relay
- UC2 capability as per IEC 62052-31:
 Rated Operational Current (Ie) = 60A
 Rated Operational Voltage (Ue) = 240Vac
- 4kV dielectric strength between coil and contacts
- 10kV impulse withstand (Circuit to Circuit)
- Outline dimensions: (55.6 x 30.5 x 16.5)mm
- Custom assemblies available with flex wire and/or copper extensions, and/or with integrated shunt
- RoHS compliant materials and process

Contact Data

Rated Load *	60A @ 240Vac
Contact form	2A or 2B
Contact material	AgSnO ₂
Contact resistance †	0.5mΩ (at 60 A)
Max. switching voltage ‡	277 Vac
Max. carrying current §	60 A
Max. switching current	80 A
Rated switching power	14,400 VA
Set time	≤ 30 ms
Reset time	≤ 30 ms
Electrical endurance **	5,000 cycles
Mechanical endurance	100,000 cycles

Characteristics

Insulation resistance	1,000MΩ (at 500 Vdc)
Dielectric strength:	
Coil to contact	4kVac for 1 min
Circuit to circuit	4kVac for 1 min
Across open contacts	2kVac for 1min
Circuit to circuit	10kVac impulse
Dielectric creepage	9.6 mm
Ambient temperature	-40°C to +85°C
Ambient humidity	5% - 85% RH
Vibration	1.5 mm (DA) 10 Hz to 55 Hz
Shock resistance:	
Functional ^{††}	98 m/s ²
Survival	980 m/s²
Coil termination	PCB or Wire
Unit weight	±60.5g

* Load at which the relay can pass UC2 as per IEC 62052-31

⁺ Typical value for initial contact resistance per relay pole: Using a sample quantity of at least 20 units, take the average value from 5 continuous measurements from each sample

[‡] Voltage at which the relay can pass electrical endurance testing as per IEC 62052-31

§ Current at which the relay can pass UC2 as per IEC 62052-31

** Resistive Load, Power Factor: 1.0; Inductive Load, Power Factor: 0.5; 240Vac/60A@23°C; Duty Cycle: On:10s/Off:20s

^{*††*} Unit may change state but is still functional

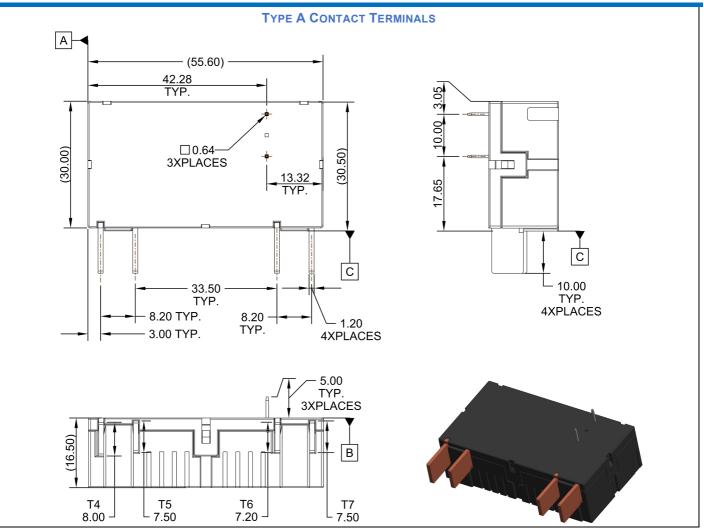
Coil Data

	Single Coil (Latching)	Dual Coil (Latching)
Coil Consumption	3W	6W
Pulse Duration	50ms	50ms

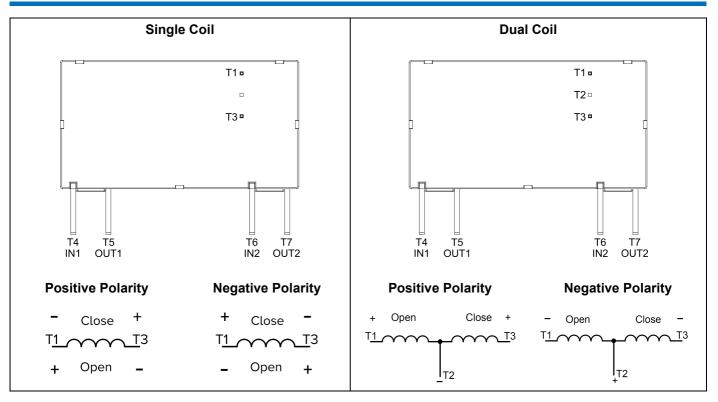
Coil Resistance

(Ω±7%) at 23°C

			()
Nominal Coil Voltage	Min Set/Reset Voltage	Single Coil (Latching)	Dual Coil (Latching)
6Vdc	4.2Vdc	12Ω	2 x 6Ω
9Vdc	6.3Vdc	27Ω	2 x 13.5Ω
12Vdc	8.4Vdc	48Ω	2 x 24Ω
24Vdc	16.8Vdc	192Ω	2 x 96Ω
48Vdc	33.6Vdc	768Ω	2 x 384Ω


Ordering Information

	K218	-	•			
Relay Series						
Terminal Type: Design ^{‡‡}	A: See drawing X: Custom					
Coil Type:	S: Single Coil D: Dual Coil					
Coil Pin Orientation	V: Vertical H: Horizontal					
Coil Voltage §§:	6, 9, 12, 24, 48	Vdc				
Polarity:	P: Positive N: Negative					
Contact Form:	2A: Form 2A – I 2B: Form 2B – I	-				
Contact Material	: T: AgSnO ₂					
Custom Number:	Cxxxx: Where x	xx repres	ents a uni	que nun	nber for c	us


^{*‡*^{*‡*} For custom designs, please contact KG Technologies. Integrated shunts, flex-wire, copper extension and brass terminals available}

§§ Coil voltage should be indicated in three-digit format (6Vdc = 006)

Dimensional Drawings

Wiring Diagrams

Application Notes

- 1. It is possible that during transit or final assembly the relay could change state. Therefore, it is recommended that all relays be set to the desired state via a power supply.
- 2. In order to maintain an "Open" or "Closed" state of the relay, the coil voltage should reach the rated voltage. The pulse width should be 50ms minimum to ensure a proper change of state. DO NOT energize both T1 and T3 at the same time on a Dual Coil or energize the coil for longer than 1 minute (damage to the coil could occur).
- 3. Applying excessive heat to the relay terminals (soldering or welding) can cause damage to the internal structure of the relay and should be avoided.
- 4. Moving or bending the terminals can cause damage to the internal structure of the relay and should be avoided.
- 5. For definitions of terms used in this data sheet, see glossary at www.kgtechnologies.net.

6028 State Farm Drive, Rohnert Park, CA 94928 Tel: +1.888.513.1874 Fax: +1.707.665.5966 Email: techinfo@kgtechnologies.net www.kgtechnologies.net

Scan here for more information

Disclaimer: This datasheet is for reference only. All specifications are subject to change without prior notice. KG Technologies, Inc. cannot predict every possible application for our relays. While we do our best to make our relays as versatile as possible, we highly recommend contacting our engineering team if you have any questions. KG Technologies, Inc. is not responsible for malfunctioning relays when operated outside the specified parameters given in this datasheet.