

K107

SUBMINIATURE INTERMEDIATE POWER RELAY

- High switching capacity
 - 1A, 1B: 10A / 250Vac / 30Vdc
 - 2A, 2B, 1X: 8A / 250Vac / 30Vdc
- 4kV dielectric strength (between coil and contacts)
- Latching and non-latching types available
- Suffix (803): TV5 compliant
- Environmental friendly product (RoHS compliant)
- Outline dimensions: (20.0 x 15.0 x 10.2)mm
- RoHS compliant materials and process

Contact Data

Contact Form	1A *, 1B	2A, 2B, 1X		
Contact rating	10A / 250Vac 10 x 10 ⁴ cycles (Resistive load)	8A / 250Vac 10 x 10 ⁴ cycles (Resistive load)		
Contact resistance [†]	Gold-plated: ≤30 No gold-plating: :	mΩ (1A / 6Vdc) ≤50mΩ (1A / 6Vdc)		
Contact material	Ag	SnO ₂		
Max Switching Voltage	380Vac	, c / 250Vdc		
Max Switching Current	10A	8A		
Max Switching Power	2500W	2000W		
Set Time	×	6 ms		
Reset Time	≤ 6 ms			
Electrical Endurance	See endnotes below §			
Mechanical Endurance	10,000,000 cycles			

Characteristics

Insulation resistance	1,000MΩ (at 500 Vdc)
Dielectric strength:	
Coil to contacts	4kVac for 1min
Across open contacts	1kVac for 1min
Ambient temperature	-40°C to +85°C
Ambient humidity	5% - 85% RH
Vibration	1.5mm (DA) 10Hz - 55Hz
Shock resistance:	
Functional [‡]	98 m/s²
Destructive	980 m/s²
Coil termination	PCB
Unit weight	±6g
Construction	Plastic sealed, Flux proofed

* TV-5 Compliancy applies to 1 Form A contact only

[†] Typical value for Initial Contact Resistance: Using a sample quantity of at least 20 units, take the average value from 5 continuous measurements from each sample

[‡] Unit may change state but is still functional (Applies to latching versions, K107-S & K107-D, only)

§ For contact form 1A, 1B only:

400W / 220Vac; 30,000 cycles (LED) – (Relay connected to LED driver)

400W / 220Vac; 30,000 cycles (Fluorescent)

Coil Data

	Non-Latching	Single Coil (Latching)	Dual Coil (Latching)
Coil Consumption	280mW	200mW	280mW
Pulse Duration	N/A	≥50ms	≥50ms

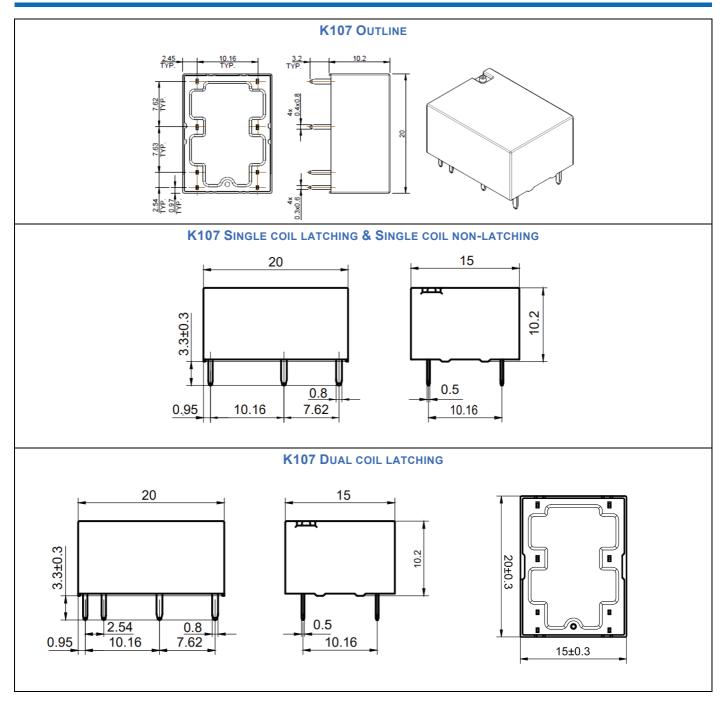
Coil Resistance – Latching

(Ω±10%) at 23°C

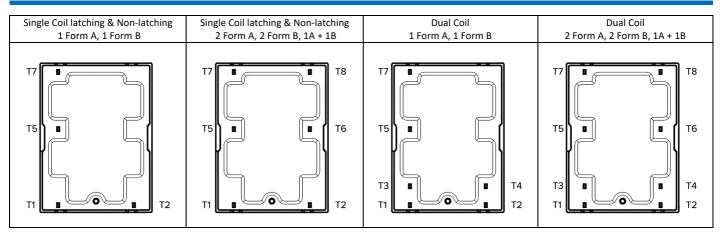
Nominal Coil Voltage	Min Set/Reset Voltage	Single Coil (Latching) Dual Coil (Latc		
3Vdc	2.4Vdc	45Ω	2 x 32.1Ω	
5Vdc	4.0Vdc	125Ω	2 x 89.3Ω	
6Vdc	4.8Vdc	180Ω	2 x 129Ω	
9Vdc	7.2Vdc	405Ω	2 x 289Ω	
12Vdc	9.6Vdc	720Ω	2 x 514Ω	
24Vdc	19.2Vdc	2880Ω	2 x 2056Ω	

Coil Resistance – Non-Latching

(Ω±10%) at 23°C

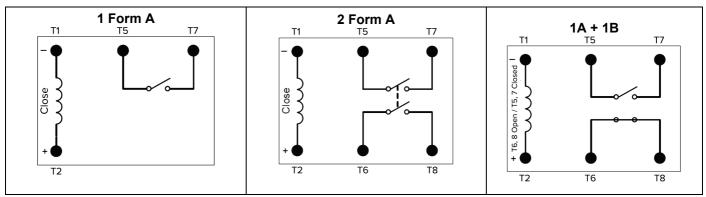

Nominal Coil Voltage	Pick-up Voltage min	Drop-Out Voltage max	Coil Resistance		
3Vdc	2.4Vdc	0.3Vdc	32.1Ω		
5Vdc	4.0Vdc	0.5Vdc	89.3Ω		
6Vdc	4.8Vdc	0.6Vdc	129Ω		
9Vdc	7.2Vdc	0.9Vdc	289Ω		
12Vdc	9.6Vdc	1.2Vdc	514Ω		
24Vdc	9.2Vdc	2.4Vdc	2056Ω		

Ordering Information

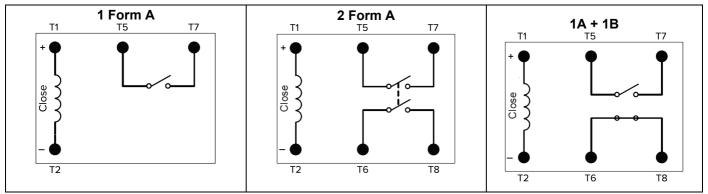

	K107	-			-	т	
Relay Series							
Coil Type:	S: Single Coil, D: Dual Coil, I Nil: Non-Late	atching					
Coil Voltage**:	3, 5, 6, 9, 12,	24Vdc					
Polarity:	P: Positive N: Negative						
Contact Form:	 1A: 1 Form A (NO) 2A: 2 Form A (NO) 1B: 1 Form B (Only for latching relay) (NC) 2B: 2 Form B (Only for latching relay) (NC) 1X: 1A + 1B 						
Contact Material:	T: AgSnO ₂						
Contact Plating:	G: Gold Plate Nil: No Gold p						
Construction:	Y: Sealed IP67	Z: Flux Pr	oofed				

** Coil voltage should be indicated in three-digit format (6Vdc = 006)

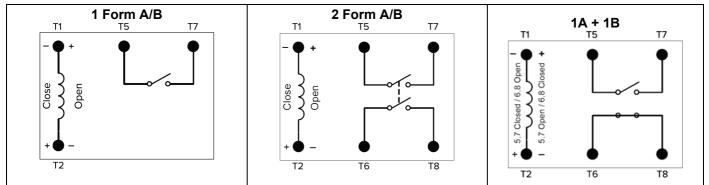
Dimensional Drawings



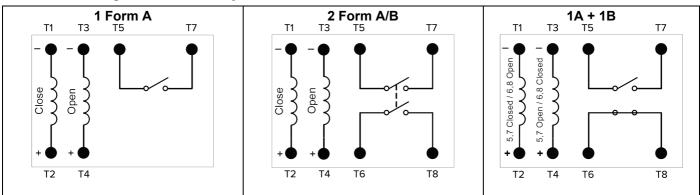
Pin Assignment (Relay Bottom View)

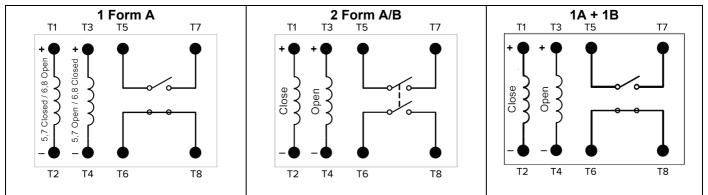


Wiring Diagrams


Non Latching – Positive Polarity


Non Latching – Negative Polarity


Single coil latching - Positive Polarity


Single coil latching – Negative Polarity

Dual coil latching – Positive Polarity

Dual coil latching – Negative Polarity

Application Notes

- 1. It is possible that during transit or final assembly the relay could change state. Therefore, it is recommended that all relays be set to the desired state via a power supply.
- 2. In order to maintain an "Open" or "Closed" state of the relay, the coil voltage should reach the rated voltage. The pulse width should be 50ms minimum to ensure a proper change of state. For the dual coil version, do not energize both coils of the relay simultaneously.
- 3. Applying excessive heat to the relay terminals (soldering or welding) can cause damage to the internal structure of the relay and should be avoided.
- 4. Moving or bending the terminals can cause damage to the internal structure of the relay and should be avoided.
- 5. For definitions of terms used in this data sheet, see glossary at https://kgtechnologies.net/

6028 State Farm Drive, Rohnert Park, CA 94928 Tel: +1.888.513.1874 Fax: +1.707.665.5966 Email: techinfo@kgtechnologies.net www.kgtechnologies.net

Scan here for more information

Disclaimer: This datasheet is for reference only. All specifications are subject to change without prior notice. KG Technologies, Inc. cannot predict every possible application for our relays. While we do our best to make our relays as versatile as possible, we highly recommend contacting our engineering team if you have any questions. KG Technologies, Inc. is not responsible for malfunctioning relays when operated outside the specified parameters given in this datasheet.